# BM2596 <br> (MSP1250G) 150kHz 3A Step-down Voltage Converter 

## General Description

The BM2596(=MSP1250G) series of regulators are integrated circuits that provide all active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are avail-able in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjust-able output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation $\dagger$, and a fixed-frequency oscillator.
The MSP1250G series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5 -lead TO-220 package with 5 pins lead in one line options, and a 5 -lead TO-263 surface mount package. A standard series of inductors are available from several different manufacturers optimized for use with the MSP1250G series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 2 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring typically $80 \mu \mathrm{~A}$ standby current. Self-protection features include a two stage frequency reducing current limit for the output switch and an over tem perature shutdown for complete protection under fault conditions.

## Features

※ 3.3V, $5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions (ADJ)
※ Adjustable version output voltage range, 1.25 V to $37 \mathrm{~V} \pm 2 \%$ max over line and load conditions
※ Available in TO-220 and TO-263 packages
※ Guaranteed 3A output load current
※ Input voltage range up to 40 V
※ Requires only 4 external components
※ Excellent line and load regulation specifications
※ 150 kHz fixed frequency internal oscillator
※ TTL shutdown capability
※ Low power standby mode, $\mathrm{I}_{\mathrm{Q}}$ typically $80 \mu \mathrm{~A}$
※ G means Pb free in MSP1250G
※ Uses readily available standard inductors
※ Thermal shutdown and current limit protection

## Applications

※ Simple high-efficiency step-down (buck) regulator, CAR DVD electronic
※ On-card switching regulators , LCD-TV , LCD-monitor , ADSL
※ Positive to negative converter

# BM2596 <br> (MSP1250G) 150kHz 3A <br> Step-down Voltage Converter 

5-Lead TO-220 (T)


5-Lead TO-263 (S)

122345
$+\mathbf{V I N}$ —This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground -Circuit ground.
Output —Internal switch. The voltage at this pin switches between (+VIN - VSAT) and approximately -0.5 V , with a duty cycle of approximately VOUT/VIN. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept to a minimum.

FeedBack —Senses the regulated output voltage to complete the feedback loop.
$\overline{\text { OW/OFF }}$ —Allows the switching regulator circuit to be shut down using logic level signals thus dropping the total input supply current to approximately $80 \mu \mathrm{~A}$. Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 25 V ) shuts the regulator down. If this shutdown feature is not needed, the $\overline{O N} / O F F$ pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

Marking information: BM2596 -xx or MSP1250G -xx on the chip, both two numbers are Pb-free; xx means output voltage

# BM2596 <br> (MSP1250G) 150kHz 3A <br> Step-down Voltage Converter 

## Block Diagram



## Absolute Maximum Ratings (Note 1)

|  | Parameter | Rating | Unit |
| :---: | :---: | :---: | :---: |
|  | ximum Supply Voltage | 45 | V |
| $\overline{\text { OV//OFF Pin Input Voltage }}$ |  | -0.3~25 | V |
| Feedback Pin Voltage |  | -0.3~25 | V |
| Output Voltage to Ground (Steady State) |  | -1 | V |
|  | Power Dissipation | Internally limited | -- |
| Storage Temperature Range |  | -65~150 | ${ }^{\circ} \mathrm{C}$ |
| ESD Susceptibility (Human Body Model) (Note 2) |  |  | KV |
| Conditions | Maximum Junction Temperature | 150 | ${ }^{\circ} \mathrm{C}$ |
|  | Temperature Range | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
|  | Supply Voltage | 4.5~40 | V |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
(MSP1250G) 150kHz 3A Step-down Voltage Converter

Electrical Characteristics (Condition : $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ )

| $\mathrm{V}_{0}=3.3 \mathrm{~V}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Conditions | MSP1250G-- $\mathrm{V}_{\mathrm{O}}=3.3 \mathrm{~V}$ |  |  | Units |
|  |  |  | $\begin{gathered} \text { Min } \\ (\text { Note 4) } \end{gathered}$ | $\begin{aligned} & \text { Typ } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Max } \\ (\text { Note4 }) \end{gathered}$ |  |
| SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | $\begin{gathered} 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$ | 3.18 | 3.3 | 3.42 | V |
| $\eta$ | Efficiency | $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$ | -- | 75 | -- | \% |
| $\mathrm{V}_{0}=5 \mathrm{~V}$ |  |  |  |  |  |  |
| Symbol | Parameter | Conditions | MSP1250G-- $\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$ |  |  | Units |
|  |  |  | $\begin{gathered} \text { Min } \\ (\text { Note 4) } \end{gathered}$ | $\begin{aligned} & \text { Typ } \\ & \text { (Note 3) } \end{aligned}$ | $\begin{gathered} \text { Max } \\ (\text { Note4 }) \\ \hline \end{gathered}$ |  |
| SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 |  |  |  |  |  |  |
| $V_{\text {OUT }}$ | Output Voltage | $\begin{gathered} 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A} \end{gathered}$ | 4.80 | 5.0 | 5.250 | V |
| $\eta$ | Efficiency | $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, | -- | 84 | -- | \% |
| $\mathrm{V}_{0}=12 \mathrm{~V}$ |  |  |  |  |  |  |
| Symbol | Parameter | Conditions | MSP1250G-- $\mathrm{V}_{\mathrm{O}}=12.0 \mathrm{~V}$ |  |  | Units |
|  |  |  | $\begin{aligned} & \text { Min } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$ | $\begin{gathered} \text { Max } \\ \text { (Note4 ) } \end{gathered}$ |  |
| SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 |  |  |  |  |  |  |
| $V_{\text {OUT }}$ | Output <br> Voltage | $\begin{gathered} 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$ | 11.40 | 12.0 | 12.60 | V |
| $\eta$ | Efficiency | $\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$ | -- | 88 | --- | \% |
| Vout is adjustable |  |  |  |  |  |  |
| Symbol | Parameter | Conditions | MSP1250G-ADJ |  |  | Units |
|  |  |  | $\begin{aligned} & \text { Min } \\ & \text { (Note 4) } \end{aligned}$ | Typ (Note 3) | Max (Note4 ) |  |
| SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 |  |  |  |  |  |  |
| $V_{\text {FB }}$ | Feedback Voltage | $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \\ \text { VOUT } \end{gathered}$ <br> programmed for 3 V . Circuit of Figure 1 | 1.21 | 1.25 | 1.29 | V |
| $\eta$ | Efficiency | $\begin{gathered} \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \\ \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A} \end{gathered}$ | -- | 75 | -- | \% |

> |  | BM2596 |
| :--- | ---: |
| (MSP1250G) | 150kHz 3A |
| Step-down Voltage | Converter |

## All Output Voltage Versions Electrical Characteristics <br> (Condition: $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

| Symbol | Parameter | Conditions | MSP1250G-XX |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ <br> (Note 3) | Max <br> (Note4 | Units |

DEVICE PARAMETERS

| Ib | Feedback Bias Current | $\begin{aligned} & \text { Adjustable } \quad \text { Version } \\ & \text { Only, VFB }=1.3 \mathrm{~V} \end{aligned}$ | -- | 10 | 100 | nA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{0}$ | Oscillator Frequency | (Note 6) | 125 | 150 | 173 | KHz |
| $V_{\text {SAT }}$ | VSAT Saturation Voltage | lout $=3$ ( (Notes 7, 8) | -- | 1.16 | 1.5 | V |
| DC | Max Duty Cycle (ON) | (Note 8) | -- | 100 | -- | \% |
|  | ```M(OFF)``` | (Note 9) | -- | 0 | -- | \% |
| $\mathrm{I}_{\text {cL }}$ | Current Limit | Peak Current (Notes 7, 8) | 4.2 | 4.8 | 5.5 | A |
| L | Output Leakage Current | Output = OV <br> (Notes 7, 9) | -- | -- | 50 | $\mu \mathrm{A}$ |
|  |  | $\begin{gathered} \text { Output }=-1 \mathrm{~V} \\ (\text { Notes 10) } \end{gathered}$ | -- | 2 | 30 | mA |
| $\mathrm{I}_{\mathrm{Q}}$ | Quiescent Current | (Note 9) | -- | 7 | 10 | mA |
| $I_{\text {StBy }}$ | Standby Quiescent Current | ON/OFF pin $=5 \mathrm{~V}$ (OFF) (Note 10) | -- | 80 | 250 | $\mu \mathrm{A}$ |
| $\theta$ лс | Thermal Resistance | TO-220 or TO-263 Junction to Case | -- | 2 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta$ JA |  | TO-220 Package,Junction to Ambient(Note 11) | -- | 50 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta$ JA |  | TO-263 Package, Junction to Ambient (Note 12) | -- | 50 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta$ JA |  | TO-263 <br> Package,Junction to Ambient(Note 13) | -- | 30 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta$ JA |  | TO-263 Package, Junction to Ambient(Note 14) | -- | 20 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

$\overline{\mathrm{ON}} / \mathrm{OFF}$ CONTROL Test Circuit Figure 1

|  | ON /OFF Pin Logic Input |  | -- | 1.3 | -- | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Threshold Voltage | Low (Regulator on) | -- | -- | 0.6 | V |
| $\mathrm{V}_{\text {IL }}$ |  | High(Regulator off) | -- | -- | 2.0 | V |
| $\mathrm{I}_{\mathrm{H}}$ | ON /OFF Pin Input Current | $\begin{gathered} V_{\text {LOGIC }}=2.5 \mathrm{~V} \text { (Regulator } \\ \text { OFF) } \end{gathered}$ | -- | 5 | 15 | $\mu \mathrm{A}$ |
| IL |  | $\begin{aligned} & \mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V} \\ & \text { (Regulator ON) } \end{aligned}$ | -- | 0.02 | 5 | $\mu \mathrm{A}$ |

# BM2596 <br> (MSP1250G) 150kHz 3A Step-down Voltage Converter 

Note 3: Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100\% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance.
Note 6: The switching frequency is reduced when the second stage current limit is activated.
Note 7: No diode, inductor or capacitor connected to output pin.
Note 8: Feedback pin removed from output and connected to OV to force the output transistor switch ON.
Note 9: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ. version, and 15 V for the 12 V version, to force the output transistor switch OFF.
Note 10: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$.
Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to a printed circuit board with (1 oz.) copper area of approximately $1 \mathrm{in}^{2}$.
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with $0.5 \mathrm{in}^{2}$ of (1 oz.) copper area.
Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with $2.5 \mathrm{in}^{2}$ of ( 1 oz .) copper area.
Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with $3 \mathrm{in}^{2}$ of (1 oz.) copper area on the MSP1250G side of the board, and approximately $16 \mathrm{in}^{2}$ of copper on the other side of the p-c board.

# BM2596 <br> (MSP1250G) 150kHz 3A Step-down Voltage Converter 

## EXTERNAL COMPONENTS

INPUT CAPACITOR $\mathbf{C}_{\text {IN }}$ - A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on. Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of $40^{\circ} \mathrm{C}$, a general guideline would be to select a capacitor with a ripple current rating of approximately $50 \%$ of the DC load current. For ambient temperatures up to $70^{\circ} \mathrm{C}$, a current rating of $75 \%$ of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements.

FEEDFORWARD CAPACITOR (Adjustable Output Voltage Version) C $_{\text {FF }}$----A feed forward Capacitor $\mathrm{C}_{\text {FF }}$, shown across R2 in Figure1 is used when the output voltage is greater than 10 V or when Cout has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability.

OUTPUT CAPACITOR Cout $_{\text {OA }}$-An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically $1 \%$ to $2 \%$ of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output.

CATCH DIODE D----Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the MSP1250G using short leads and short printed circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications ( 5 V and lower). Ultra fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems.

INDUCTOR SELECTION L----All switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low. The MSP1250G (or any of the Simple Switcher family) can bemused for both continuous and discontinuous modes of operation.

# BM2596 <br> (MSP1250G) <br> 150kHz 3A Step-down Voltage Converter 

## Typical Application

1. Fixed Output Voltage Versions, BM2596 (MSP1250G)


## 2. INVERTING REGULATOR

The circuit in Figure following converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator's ground pin to the negative output voltage, and then grounding the feedback pin, the MSP1250G generate a negative output voltage. Since this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 40 V .Additional diodes are required in this regulator configuration. Diode D1 is used to solate input voltage ripple or noise from coupling through the $\mathrm{C}_{\mathbb{I N}}$ capacitor to the output, under light or no load conditions. Without diode D3, when the input voltage is first applied, the charging current of $\mathrm{C}_{\mathbb{N}}$ can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage.

$\mathrm{R} 1=\mathrm{R} 2=47 \mathrm{~K}, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{~L} 1=33 \mu$
$\mathrm{CIN}=68 \mu \mathrm{~F} / 25 \mathrm{~V}, \quad \mathrm{COUT}=47 \mu \mathrm{~F} / 20 \mathrm{~V}$

# BM2596 <br> (MSP1250G) <br> 150kHz 3A <br> Step-down Voltage Converter 

## Test Circuit and Layout Guidelines

Fixed Output Voltage Versions


$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)
$$

where $\mathrm{VREF}=1.23 \mathrm{~V}$

$$
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)
$$

Select $R_{1}$ to be approximately 1 k , use a $1 \%$ resistor for best stability.
$\mathrm{C}_{\mathbb{I N}}--470 \mu \mathrm{~F}, 50 \mathrm{~V}$, Aluminum Electrolytic Nichicon "PL Series"
Cout --220 $\mu \mathrm{F}$, 35V Aluminum Electrolytic, Nichicon "PL Series"
D 1 --5A, 40V Schottky Rectifier, 1N5825
$\mathrm{L}_{1}$--68 $\mu \mathrm{H}$, L38
R ${ }_{1}-1 \mathrm{k}$, 1\%
$\mathrm{C}_{\text {FF }}$-.See Application Information Section

## PACKAGE DIMENSION



TO-263 (N263)


